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In this paper it is shown that the use of the volume fractions ~b i to characterize the composition of a system 
allows an easy evaluation of its scattered intensity at zero angle, even if it is compressible, If the volume 
fractions are independent of composition, the intensity can be split into two terms: the first corresponds 
to the density fluctuations of the medium at constant composition, the second is the composition fluctuations 
as already evaluated for an incompressible system. In a majority of cases these formulas can be generalized 
at any angle and for systems for which the volume fractions depend on composition and pressure. As an 
example the results of these calculations are expressed in terms of experimentally available quantities for 
a two component system studied either by light scattering or by neutron small angle scattering technique. 
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I N T R O D U C T I O N  

Recently Benoit, Benmouna and Wu 1 proposed a general 
equation allowing the calculation of the scattered 
intensity at any angle by an incompressible medium 
composed of any number of polymers and copolymers. 
The thermodynamic part of this theory was based on the 
use of exchange chemical potentials. In this paper we 
would like to generalize these results to the case of 
compressible systems. In fact this problem has already 
been considered by many authors 2~.  Recently des 
Cloizeaux and Jannink 5, using vectorial geometry analy- 
sis, a very elegant approach, gave a solution to this 
problem. Our purpose here is to show how it is possible 
to obtain these results very simply and to discuss their 
application to experimental situations. 

T H E  SCATTERING P R O B L E M  

One knows that the intensity scattered at zero angle by 
a volume V made up of N identical molecules is described 
by the Einstein 6 equation: 

I(0) ~ a2AN 2 (l) 

where, for neutron scattering a is the coherent scattering 
length (one assumes that the incoherent scattering has 
been suppressed). For  light scattering a is equal to the 
polarizability of the molecules which are assumed to be 
isotropic. AN 2 is the average value of the fluctuations of 
the square of the number of  molecules in the volume V. 
In fact one should introduce the necessary constants to 
replace m by = but, in order to have simpler formulas 
it will be assumed that these constants are unity and we 
shall discuss later their exact values. 

Let us consider a system containing p + 1 types of 
molecules and introduce the quantity P defined as: 

P 

P = ~, aiN , (2) 
o 

where a i is the value of the quantity a corresponding to 
the molecular species i. Equation (1) becomes: 

I(0) = AP 2 (3) 
or 

p 
1(0) = ~ a?AN{ + 2 E a,a~AN, ANk (4) 

i=o i ~ k  

This expression has now to be evaluated from the 
thermodynamic properties of the system. 

Before doing so it is convenient/' to introduce new 
variables. Because density and composition fluctuations 
are of different nature it is important to use variables 
which separate them clearly. We shall therefore use the 
quantities N~ defined as: 

N~ = Ni vl = Nizl (5) 
Vo 

where v, and v o are the partial molar volumes of the 
molecules of species i and of species 0 respectively. The 
species 0 is arbitrarily called the solvent, and z, is a 
thermodynamic quantity which can be defined as: 

8P / r'N~'r (6) 
z i -  (8 ,o  I 

It will nevertheless be treated as a constant and the effect 
of its dependence on compression and composition will 
be discussed at the end of this paper. If one introduces 

V p 
also the quantity N r - - -  ~ Nizl and the quantity 

Vo i = O  

Niz~ 
qg,- one obtains for P: 

E N z, 

-1 
P = aoNr + _ ~ a° z,Ni = aoN T+ _ 

i=~ -- i=l~zii--a°~ Ni 
l 
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: NT[ao*  ~=l [ ~ - - a o ¢ i l l  (7) 

This suggests the introduction of the quantities: 

ai ai P 
= -- - ao a = ao + ~ fii¢i (8) 

Z i i = 1  

which are practically always used by experimentalists. 
The value of the quantity p = P/V becomes: 

p = P / V = a / v o = l [ a o + ~ = l  ~,¢,] (9) 

where ~ is the average value of the az on the volume V. 
One has therefore three possible expressions for the 

scattering intensity: 

1. The expression given by equation (4) which 
gives the intensity as a function of the variables 
No, N1 . . . . .  N, . . . .  , Np. 
2. If one uses the variables Nr, N'i . . . .  , N~, one obtains, 
by differentiation of the first term of equation (7): 

I(O) = a~)AN~ + 2 E aogtiAN;ANr + Z E aiakAN~AN'k 
(lO) 

3. Finally, if one uses the variables Nr, Cx . . . . .  Cp one 
obtains, by differentiation of equation (9): 

I(O) = aZAN~ + 2N r ~ ~fi,ANrA¢ ~ 
i 

i k 

Equation (11), in which Nr and ~b, are the variables is 
evidently the most convenient because the three terms 
into which the scattering intensity is split have a simple 
physical meaning. The first one corresponds to fluctua- 
tions at constant composition. Through the variable N r, 
it is the total number of molecules which varies, at 
constant composition, in the constant volume V and we 
are dealing with density fluctuations exactly as in a one 
component system. 

The last term is due to the fluctuations of the volume 
fractions at constant N r and constant volume. This is 
the term one would obtain assuming that the medium is 
incompressible. It has been evaluated recently ~. 

The only problem left is the evaluation of the second 
term which corresponds to the coupling of density and 
composition fluctuations. This term has been shown to 
be zero 5. We shall give here another demonstration but 
before doing so, some classical results of thermodynamics 
will be summarized. 

THE THERMODYNAMICS OF THE PROBLEM 

If one uses the variables N~ for the definition of the Gibbs 
free energy one writes: 

P 
G = X N,/2, (12) 

i = 0  

where #~ is the chemical potential associated with the 
species i. If one uses the variables N r and N~ one has to 
use the exchange chemical potential p~ defined by the 
relation: 

fil =/2~ -/20 (13) 
Zi 

and to write: 
P 

G = NTlt 0 + E N~ftt (14) 
i = 1  

or, using the variables N T and q~i: 

This leads to the definition of a, the free energy per 
volume of a solvent molecule: 

G P 
g = NT = #o + ,=,E ,5,~b, (16) 

g is only a function of the ~bi values. Because it is an 
intensive quantity it obeys the relations: 

p,T 

One can also write for the volume the classical equation: 

P 
v = X v,N, 

i=O 

where the v~ values are, as before, the partial molecular 
volumes. 

Deriving these equalities by the pressure p gives, 
assuming that z~ is a constant: 

~P _I z-~ ~p ~p = -: vi - v° = O (18) 

In the course of this paper the relation between the 
quantities (c3#ffdNk)v and (d/2ffdNk)p as well as the 
corresponding relations for the exchange potentials will 
be required. In the appendix the reader will be reminded 
that: 

+ (19) 
 0N,/o = 7 N , / ,  

where fl is the isothermal compressibility coefficient 
( -1 / v  x dv/dp) r and v i and v k the volumes of the 
molecules of species i and k respectively. If one applies 
this relation to the exchange potentials one obtains 
evidently: 

 NUp 
when i or k differs from zero. This quantity differs from 
0 only if i and k are equal to 0. The chemical potential 
associated with Nr is/20 and one has: 

= ( 2 1 )  V A 

aN /p 

because (3/2o/SNr)v=O (/2 0 is, at constant pressure, 
independent of the total number of molecules). 

THE QUANTITIES AXAY 

This calculation can be made through the use of the 
grand partition function which can be defined as: 

E = ~ C exp ~-~ I ~  /2,Ni- U 1 (22) 
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where C is a factor which, for this problem, can be 
considered as constant. The summation has to be 
extended, at V and T constant, over all the possible 
states of the system, each having the energy U. The 
classical method 7 to obtain average values of Ni is to 
take the derivative of In E with respect to #~: 

Multiplying the two terms of the right hand equality by 
k T E  one obtains: 

N~C exp ~ }-"/z~Ni- U = E N  (24) 

Differentiating again with respect to/z k and dividing by 
E leads to: 

N~Nk --  N N k  = k T ~N~ = k T ON, = (ANANk)v,N m (25) 
O]-~ i 01.~ k 

where m represents all the indices, except i and k. (From 
now on, we shall omit the subscript T because all the 
derivatives are taken at constant temperature.) 

The same procedure can be repeated if, instead of using 
as variables No" • .Np, we use NT, N'~. • .N'~. It suffices to 
replace the classical expression of G by equation (14). 
When N r is kept constant i and k are different from o 
and one obtains: 

(c~N~) (26) 
(AN~AN'k)V,m. = k T \ O~k'/ V,Nr,Nm 

Because in these derivations N r is constant (i and k are 
different from o and T), one can write: 

(AdPiAOk)V,Sr,N. - NT flk NT \ Ofli/V,Sr,N,~ 

The case of the quantities (ANrAe/h)v,N~ is more subtle 
because G is no more a linear function of these variables. 
If we use equation (15) for G and put it in the definition 
of E, a first derivation with respect to fil gives: 

- -  ' [ 1 
t3 In ,- 1 ~-, Nr~Pi C exp t20NT + Z ftiNT¢i -- U 

Oft i ~ ' "  k r  

_ N r ¢ ,  (28) 
k T  

o r  

l n E  
N T ¢  i = k T - -  (29) 

Classical thermodynamics tells us that: 

k T  In E = G - A (30) t 

where A is the Helmholtz free energy, and that: 

P 
d ( k T  In E) = Nrd/ t  o + NT ~ ¢ ~ d ~  + V dp - S dt  

i = 1  
(31) 

which leads to: 

c~lnE 
N T ~  i = k T - -  (32) 

where Nr  and ¢1 are the averages taken on the ensemble. 
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This shows that Nr¢~ - Nr¢~  = o; therefore A N r A ¢ ~  = O. 
This confirms that if one chooses the variables correctly 
there is no cross-term 'density-composition'  in the 
expression of the scattering intensity. 

The last term which has to be evaluated is the term 
AN~ at ¢~ constant. One obtains easily the classical result, 
known for pure liquids: 

= \~a-g/~, ,  v (33) 

CALCULATION OF TH E SCATTERING 
INTENSITY 

From the results of the preceding section it is evident 
that it is most convenient to use the variables Nr, ~b~ 
(1 ~< i ~< p) because this eliminates all the cross terms of 
the form ANrA¢~. Returning to equation (11) one 
obtains: 

The first term depends only on the variables Nr, because 
¢ and V are constant and one obtains: 

' 

dg 
\ , C g / , , v  ( ~ r r ) ~ , v  

If one uses equation (20) in the case of a system with 
only one variable one sees that the term (gg/~3Nr)p is 
equal to zero because g is independent of Nr and one 
obtains: 

I(O,=rakT(ONT~ =6ZkTfl~ ° (36' 
\ ~g/4,,v 

recovering the classical result for a homogeneous system. 
The evaluation of the last term is classical. O n e  has 

to express the 0¢k/0fii as functions of the c~fii/~¢ k. One 
writes the matrix [H]  having ~fiJ&~k or ~?2g/0¢~t?¢~ as 
the general term. This matrix has p rows and p columns 
and is symmetrical. The quantities C%~k/C~[h are the 
coefficient of the inverse matrix [HI - 1, or the cofactors 
of the matrix [HI  divided by its determinant. If one calls 
[a] the column vector made of the optical coefficient al 
defined in equation (10) and [ a t ]  its transpose or the 
row vector made of the a~ one obtains from equations 
(34) and (36) the final result 

I (o )  = V k T f l  + N r k r [ a r ] [ H ]  -~[a]  (37) 

It is interesting to modify this formula in order to use 
quantities which are more familiar to the experimentalist. 
For  this purpose one assumes that the free energy of the 
system can be put in the Flory-Huggins s form and writes: 

1 ~32g 1 
- + Xik - ;(io - Xko = vik (38) 

k T c3c~idO k Oo 

1 ?2g 1 1 
+ - -  - 2)£io = vii (38a) 

P 
where ¢o = ~ ¢5 the Zik are the interaction coefficients. 

i = l  
per volume of a solvent molecule, between species i and 
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k in the chosen solvent and the v~k are the classical 
excluded volume parameters or the ratios of the excluded 
volume integral to the volume of the solvent vo. These 
quantities do not have to be constant and can be defined 
for any system by the equations (38) and (38a). This 
allows one to rearrange the matrix [HI and write: 

1 
- -  [H] = [x i i  ] - 1 .jr_ [t)ik] (39) 
k T  

calling [x,]  the diagonal matrix having x ,  = z~bi as 
elements along its principal diagonal and [V~k] the matrix 
of the excluded volume parameters. One obtains: 

I(0) = V(a/Vo)2kTfl + Nr[aT][[x] - i  + I V ] I -  1[a] (40) 

DISCUSSION 

z~ is not a constant 
Until now we .have assumed that the z~ values were 

constant but, in the general case they could depend on 
pressure and composition being thermodynamical vari- 
ables defined by equation (6). In order to extend our 
previous results we first note that equation (15) is valid, 
even if the z~ values are not constant. This follows from 
the fact that because G is a homogeneous function of the 
first order of the N'~ one can use the Euler theorem. In 
order to write equations (22) and (23) correctly one has 
to change the variables in the expression of G as well as 
in the integration volume. This means that one has to 
introduce the Jacobian of the transformation, i.e. the 
quantity: 

d(N o, N~, N 2 . . . . .  Np) (41) 

~(NT, 4 ' .  ,~2, • • • ,  4,~) 

If this Jacobian does not depend on the /21 or its 
derivatives equation (28) is valid and one recovers the 
basic equation of this paper ANrA~b~ = 0. 

This is obvious if the z~ values depend only on the 
pressure and are independent of the composition. 
Therefore differences between the compressibility of the 
solvent and the polymers do not alter the form of the 
results. 

The case where the vi or the z~ values depend on 
composition is more difficult. In order to verify that our 
equations are still valid in this case, we have used a 
straightforward but inelegant method. Starting from 
equation (26) one determines the quantities AN~ANj and 
evaluates the inverse of the determinant for general term 
al~i/~3N k + OjVk/f lV.  For large values of p its calculation is 
tedious and we have only been able to show that the 
denominator is the product of two terms, one depending 
only on the compressibility of the system, the other on 
the free energy of mixing. This result is identical to the 
result obtained in the special case where the z~ values are 
constant. In order to evaluate ANrA~bi we use the 
relation: 

0 ,  P 4,~ 
ANrA¢, = .-T-- ~ okANkAN, -- - -  ~. AN, ANj (41) 

lViVo k = 0 ~, Nivi i,~ 

relating ANrAq9 i to the ANiANj. This has been done in 
the case of a two component system (see Appendix) and 
a three component system. In both cases one finds 

ANTA(ai = 0. It seems therefore that the equation (37) is 
more general than expected and valid for any solution. 

The generalized spinodal 
If one writes the complete matrix of p + 1 rows and 

p + 1 columns one sees that its determinant is simply the 
product of the compressibility term by the determinant 
of the matrix [H]. This means that, even in the case of 
a system where the vi values depend on pressure and 
composition, the scattering can become infinite only if 
the compressibility diverges or if the mixture goes to a 
critical point, even if these two points are near one from 
the other. 

The number o f  functions Sij(q) 
One can write, quite generally, the scattering intensity 

as a function of the scattering vector q, Iql = q  = 
(4rff2) sin(0/2) where 2 is the wavelength of the incident 
beam and 0 the observation angle: 

I(q) = Z ~ ~iakS, k(q) (43) 
i k 

and it has been claimed ~° that, because S~k = Ski, one 
needs for p + 1 constituents p(p + 1)/2 functions S~k(q) in 
the general case and p ( p - 1 ) / 2  in the case of an 
incompressible system 9. In fact, this is correct, at least 
for q = 0, for the incompressible media but not for the 
general case where the exact number is, following 
equation (40), 1 + p(p - 1)/2. This result is only valid for 
q = 0. In order to show that this remark is not always 
true let us consider the case of a diblock copolymer 
dissolved in a solvent: at zero angle two partial scattering 
factors only are required to describe its scattering, at 
finite angle, one needs the use of the partial structure 
factors Pa(q), Pb(q), P,b(q) to describe the system and four 
partial structure factors are needed. 

The influence o f  the scattering angle 
Another interesting problem is the evaluation of the 

scattering function at any angle. It is evident that, unless 
one is near to a critical point, the density fluctuation 
term is independent of the modulus of the scattering 
vector a. This means that the first term of equation (40) 
is correct for any value of q. Recently Benolt, Benmouna 
and Wu ~ proposed, without taking compressibility into 
account, an equation identical to the second part of the 
right hand side of equation (40) the only difference being 
that the term x ,  of the matrix Ix] was given by: 

x ,  = ckiz,P~(q) (44) 

Pi(q) being the form factor of the molecules of the species 
i. A simple generalization of equation (40) is therefore 
obvious: it suffices to use for the x ,  the definition of 
equation (44) instead of the value x u = ziq~ ~. One knows 
that the method used in reference 1 gives results identical 
to those obtained first by de Gennes a° using a method 
which he called the random phase approximation. In this 
method it is assumed that the medium is incompressible 
but, because the same results can be obtained without 
making this hypothesis, one can conclude that the result 
is independent of this hypothesis. 

Generalization to copolymers 
Equation (40) was generalized to the case of copoly- 

mers by introducing in the matrix [x] cross-terms of the 
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form: 

x~k = ¢~ZoU~UkP~k(q) (45) 

where O~ is the volume fraction of the copolymer with 
degree of polymerization z, and volume fractions ui and 
Uk of the species i and k in the copolymer molecule. 
Because these terms do not modify the zero angle result 
they can be introduced safely and allow one to write a 
general equation valid for every kind of mixture by 
generalization of the matrix Ix]. Before closing this 
discussion it is important to realize that some of the 
conclusions which have been developed in these last 
paragraphs could be found to be incorrect in some special 
cases. They have to be used cautiously. 

Up to now we have used volumes and volume fractions 
instead of masses which are always used by experimental- 
ists. For  instance we use the degree of polymerization z 
which depends on the solvent and on the nature of the 
other polymers in the case of a mixture of polymers and 
this is not an experimental quantity. In this last section 
we would like to use a more accessible language which 
expresses, as much as possible, these results in terms of 
experimentally available quantities in both cases: neutron 
and light scattering. 

APPLICATION TO NEUTRON SCATTERING 

As an example of the application of this formula let us 
consider the case of a binary mixture. Formula (34) 
becomes, if one uses .1 /VdE/f fL  the differential cross- 
section per unit volume: 

1 dY'- AP2- (fi--)2kT[3+F~] 2kTv° (46) 
V f ~  V \roy LVoJ 62g 

0 ¢  5 

One sees first that the quantities a and ~ enter the 
formula through their ratio to the volume vo. This leads, 
using equation (8), to 

~/v o = ao/V o + ~pl(aa/vl -- ao/Vo) 
(47) 

at/v o = a, /v  1 -- ao/Vo 

where vo and vt are respectively the partial volumes of 
the solvent and of the solute respectively. If one knows 
the specific masses, Po and p~, and the molecular masses, 
m o and ml, one has: 

h/Vo = ¢oPoao/mo + ¢ lP la l /ml  
(48) 

[tt/v o = plal/rnl - poao/mo 

calling ~b o the volume fraction occupied by the solvent. 
Because for a polymer the quantity al/m~ does not 
depend on the degree of polymerization one can take for 
aa and ml the values corresponding to the real monomer. 
If we assume that the system obeys Flory's law for its 
chemical potential, the scattering intensity will be: 

1 dZ ( poao+ P l a ~  2 
V d O -  ¢ o - -  q 5 1 -  kTfl  

m o ml / 

\Vo/ 1 1 
F- 2Z 

z¢ (~ - ¢) 

All the quantities (except z and Z) are experimentally 
available. At infinite dilution the second term of the 
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scattering intensity takes the form: 

( p l a l  poao~2zVoCk=[ax Po a o]  2 Ma (50) 
ml m0 / ml p lmod  N - c t  

which is the well known form of the result if one calls 
M 1 the molecular weight of the solute, ct its concentration 
and N the Avogadro's number. Because v o and v 1 are 
partial quantities, p~ and Po depend on concentration 
and should be measured carefully if one needs a great 
precision. 

If, in the general case, one wishes to express all the 
terms of equation (49) as function of masses instead of 
volumes one writes c=pt~)  1 and z l = M t p o / M o p t ,  
calling M0 and M~ respectively the molecular weight of 
the solvent and the solute. The generalization to many 
constituents is obvious. 

THE CASE OF LIGHT SCATTERING 

The case of light scattering is very similar to the case of 
neutrons but there are two difficulties related to the 
nature of the interactions between light and matter: first, 
one has to subtract from the total intensity the contribu- 
tion of the fluctuations in orientation. This is well 
known 11 and formulas allowing the subtraction, from 
the total scattering, of the anisotropic < contribution 
have been developed a long time ago 11. We shall therefore 
assume that this has been done or that the system has 
no orientation fluctuations. 

The second difficulty comes from the fact that the 
values of a are no longer intrinsic properties of matter 
but are thermodynamic quantities related to the dielectric 
susceptibility e or the index of refraction n of the system. 
If one writes the fundamental equation of electrostatic 
(in c.g.s, units) 

e--1 P 
(51) 

47z E 

one sees that the quantity p, defined in equation (9) is 
identical to p/E (~ = P/E). Because this quantity is an 
homogeneous function of the Ni, one can use equation 
(2). By differentiation, after replacing e by the square of 
the index of refraction n one finds: 

ai n ~3n 
- ( 5 2 )  

vo 2re ~¢~ 

remembering that the ~ values are partial molar 
quantities. This shows that the ?t/v o are well defined 
experimental quantities and are easy to measure. With 
these notations we shall now write the Rayleigh constant 
R of the system for unpolarized light (and isotropic 
molecules) at q = O. One knows that: 

16~ 4 1 - -  
R(o) - AP E (53) 

;t 4 V 

2 being the wavelength, in vacuo, of the incident beam. 
This expression can be divided in two terms which will 
be called Ra and Re and correspond to the density and 
composition fluctuations respectively. 

The compressibility term Rd 

Using the expressions of the first term of AP 2 defined 
in equation (34), one obtains for its first term, assuming 
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following Coumou lz that zi does not depend on pressure: 

I as n an a(liv, __=-_=ij -___ =_ 
471 ap 2~ ap 1 1 

% 
ap V, 

or 

ii n an vg -_=--- 
0, 27c @ P 

and using equation (40) 

(54) 

167~~ 1 ii2 
Rd(o) = __ 

__@=4n2n2kT an 2 

/I4 v v,’ A48 0 & 
(55) 

where Rd is the part of the Rayleigh ratio due to the 
density fluctuations at q =O. (For q #O one has to 
multiply this result by the factor ((1 + cos2 8)/2) in the 
case of natural light. This is a classical expression for the 
scattering by a pure liquid. It assumes that the quantity 
ii does not depend on pressure; this is questionable” but 
we do not want to enter into this discussion here. 

The composition jluctuations term 

Using equations (44) and (51) one writes immediately: 

dn 2 
Rm(0)=$n2 - ___ 

0 

kTv, 

a+ ww2 
(56) 

calling Rg the contribution to the Rayleigh ratio of the 
composition fluctuations at q = 0. 

One can also write this expression using the variables 
c and M, using the following transformations: 

an an an -=_-----_ 
a$ a(c/p,) “Z 

(57) 

(58) 

One uses also the Gibbs-Duhem relation to express 
a2gfap as function of apo/ac. 

8% ai4 1 a~, afi, - 1 ape -y=--_--_=__= 4 ape 
84 a+ zl a4 ag, 4 a4 

7% (59) 

Writing equation (54) as function of c one obtains: 

(60) 

(61) 

or, introducing the osmotic pressure ii, defined by: 

ti,oo = - (p, - &) (62) 

R+,(q) = ?f n2 
n4 

kTc 
___ (1 + cos2 0) 
awide 

(63) 

which is the classical formulation of the result for 
molecules with a form factor equal to unity. 

CONCLUSIONS 

All treatments, in which it is supposed that the system 
is incompressible, can be generalized to compressible 
media. One simply adds to the calculated value a second 
term which is the contribution of the density fluctuations 
of a medium of the same average density of coherent 

scattering length (or index of refraction) and the same 
compressibility. The variables we have used are natural 
variables; they allow a very simple derivation of the 
thermodynamic expressions for density and composition 
fluctuations. This should allow experimentalists to write 
correct formulas, especially when they use scattering 
experiments for the determination of thermodynamic 
quantities on low molecular weight substances13*‘4. 

In this paper we did not mention the effect of 
polydispersity which has been discussed extensively in 
reference 1. One has just to modify the definitions of the 
coefficient of the matrix [x] to take care of it. 
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APPENDIX 

Demonstration of equation (20) 

From the theory of functions with more than one 
variable one writes: 

(%j,., = (g).,, + (3, (~)“,,, CA11 
where the index N, means that all the Ni for i #k are 
constant. Because one assumes that pi is taken at p 
constant one can write: 

dG pi = zig ( > Nk,p 

642) 

Taking the derivative of (api/ap)N with respect to p 
one can, changing the order of differentiation write: 

($),=&=(&)Nm=ri (A3) 

since aG/ap = V. In order to evaluate the quantity 
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(dp/ONk)~,N one writes: 

d V = ( O V ]  dN k + dp (A4) 
\aNk/p 

and this gives at constant volume (d V = 0): 

(Op) (OV/ONk)pU k 
~ = - (AS) 

where v k is the partial molar volume of component k and 
fl the isothermal compressibility ( -  1 Ov/vOp). Putting this 
value in equation (IA) one obtains the desired result, i.e.: 

0/t,) = ( ~ ) p , n  + ~V ~ (A6) 
0N~,, ~,N 

The case of  a two component system treated using the 
variables No, NI 

The matrix [HI, after using equation (8) to transform 
the derivatives at constant V into derivatives at constant 
p, becomes: 

The determinant of this matrix can be evaluated easily 
using the Gibbs-Duhem relation: 

N O + N  1 = 0  ( i = 0  or I) (A8) 
i ~Ni 

which enables one to express all the partial derivatives 
as function of one of them. One finds: 

(~Po~ V (A9) Det = - - - - - \~/p 
fl NoN1 

The cofactors are also easy to determine and one finds: 

k T -  V V2 \if-N-l] (A10) 

ANoAN, flNoN, NoN,?oV, (Ol~o)-' 
- F V2 \~--I~1/t (All)  kT V 

A N E - f l N 2  N°Nav2 (O/t°~ - '  (A12) 
kT V V 2 \ON1] 

Multicomponent compressible systems: t4. Benoit 

If one uses these variables one obtains, after rearrange- 
ment the following expression for AP 2. 

kTfl Ap 2 = (aoN o + aiN1) 2 
V 

N°N'(a'v°-a°v')2 (O/ t° ' ]  - '  (AI3) 
V2 kT \ON, iN2 

this expression is identical to equation (37) simplified for 
the case of two components because the quantity 
(aoNo + axN1) is equal to 

(aoNo + a,N1) = Nr(a o + ¢fi,) = Nra (A14) 

and one knows that (O#o/ON,)No and (Opo/OC~) obey the 
relation: 

and that the quantity alv o -aov  ~ is given by: 

a~vo - aoV~ = v~(a~ V° - aol = Vl~l 
\ vl / 

(AI6) 

One can also recover equation (32) writing the expres- 
sions of ANx 2, ANTA¢ and A¢ 2 as function of AN 2, AN z 
and ANoAN1 because: 

ANT = ANo + z,ANI 

A~b=A( z~Na ) =  1 
\ N  o + z ,N , ]  -~r [zaAN, - qS(AN o + ZlAN,) ] 

(A17) 

The calculation is tedious but straightforward. It is 
important to note that in this treatment we never made 
any differentiation of expressions containing z, except in 
the final statement in which we announce that formula 
(A13) is identical to equation (44) where we should 
introduce the derivative of z with respect to the 
composition. This means that, even if the ratio z, = vi/vo 
depends on pressure, equation (37) is correct in spite of 
being derived with z constant. This result which has been 
established in detail for a two component system can be 
extended to any number of constituents and should be 
used by experimentalists. 
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